Preface

Seventh international scientific conference Technics and Informatics in Education – TIE 2018 aims to promote and support research in education of new generations in technical and technological fields at all levels of education and contribute to technology development and education improvement.

Some 72 papers have been submitted within various fields of technical, IT and technology-supported education at all educational levels – primary, secondary, higher education and education for adults. After reviewing, 64 papers have been accepted for the current edition of Book of abstracts in the form of plenary lectures and original scientific papers.

Authors are responsible for any spelling, grammar and stylistic errors in their work.

Articles in the Proceedings TIE 2018 are organized by the following topics:

- Plenary lectures
- Technics, Technology and Informatics in Education
- IT Education and Practice
- Engineering Education and Practice

Special activities within the Conference are the following:

- Round Table – University education of the professors of technics and IT in the region
- The Day of Computing – 20 years of Computer engineering studies at the Faculty of technical sciences Čačak
- Poster Session: Research project in the field of technical sciences and teaching at the Faculty of technical sciences

The Scientific and Organizing Committee wishes to express gratitude to all the professionals from various fields who contributed to the Conference.

We would like to thank Partner Institutions which participated as co-organizers of the Conference.

We express special thanks to the Ministry of Education, Science and Technological Development of the Republic of Serbia for financial contribution to this scientific gathering.

Ivan Miličević
Editor
Chairmen’s Foreword

Faculty of Technical Sciences Čačak, University of Kragujevac, has the honour to organize the seventh international scientific conference ‘Technics and Informatics in Education – TIE 2018’.

The Conference continues the tradition of gathering scientific associates and professionals in technical, technological and IT education in primary and secondary schools in Serbia. For the last 50 years this assembly has been organized in various forms (scientific and professional conferences and consultations on technical education, information technologies, technical seminars, etc.). These scientific and professional gatherings have had a huge impact on the development of technical education, mostly in primary and secondary education. The impact is also noticeable in both higher and university education. Six conferences titled Technics and Informatics in Education were held in 2006, 2008, 2010, 2012, 2014 and 2016. Still, the necessity for continuous, organized scientific assembly related to technics and informatics in new surroundings has increased.

The aim of the conference TIE 2018 is to improve the exchange of knowledge and experience between experts, scientific associates and professionals from Serbia, neighbouring countries and Europe, engaged in the subject matter. The conference will provide an analytical review of technical (technological) and IT education, as well as education regarding technical (technological) and IT achievements including assistive technology, teaching aids, student books, etc. Teacher training is considered highly significant for research and development in education in this field.

The Conference includes technical (technological) education at all levels: from preschool institutions, primary and secondary schools over higher and university education, to various forms of lifelong learning.

Furthermore, the special emphasis will be given to the place, importance, and role of informatics and IT in technical and professional education, as well as correlation with other natural, social and education science.

A comprehensive analytical review will be given on the state of education in the fields of technics and informatics, as well as the contribution of technical and IT education to other fields.

The conference results are expected to provide the basis for planning the development of education in Serbia, especially in the fields of technical (technological) education, engineering, IT and informatics. The results are also expected to support and contribute to the exchange of educational patterns in the region and coordination with European trends in this field.

We hope that experience gained at the Conference will be very useful both for the participants and for the development of technical-technological education field.

Danijela Milošević
Željko M. Papić
Co-Chairs
Organization

The 7th International Scientific Conference Technics and Informatics in Education – TIE 2018 is organized by the Faculty of Technical Sciences Čačak, University of Kragujevac, Serbia.

The Conference is held under the patronage of:
- Ministry of Education, Science and Technological Development of Republic of Serbia
- University of Kragujevac, Faculty of Technical Sciences Čačak, Serbia

Scientific Committee

Co-Chairs:
Danijela Milošević, University of Kragujevac, Faculty of Technical Sciences Čačak, Serbia
Željko M. Papić, University of Kragujevac, Faculty of Technical Sciences Čačak, Serbia

Honorary Chair:
Dragan Golubović, University of Kragujevac, Faculty of Technical Sciences Čačak, Serbia

Members:
Jeroslav Živanić, Vice-Rector of University of Kragujevac, Serbia
Nebojša Mitrović, Dean of Faculty of Technical Sciences Čačak, University of Kragujevac, Serbia
Snežana Marinković, Dean of Educational Faculty Užice, University of Kragujevac, Serbia
Mile Savković, Dean of Faculty of Mechanical and Civil Engineering Kraljevo, University of Kragujevac, Serbia
Dragica Radosav, Dean of Technical Faculty “Mihajlo Pupin” Zrenjanin, University of Novi Sad, Serbia
Sunčica Denić Mihailović, Dean of Educational Faculty Vranje, University of Niš, Serbia
Damir Purković, University of Rijeka, Department of Polytechnics, Croatia
Ivan Luković, University of Novi Sad, Faculty of Technical Sciences, Serbia
Dragica Pavlović Babić, University of Belgrade, Faculty of Philosophy, Educational Research Association of Serbia
Matjaž Debevc, University of Maribor, Faculty of Electrical Engineering and Computer Science, Maribor, Slovenia
Tatijana Đlabac, University of Montenegro, Maritime Faculty of Kotor, Montenegro
Marian Greconici, Politehnica University of Timișoara, Faculty of Electrical and Power Engineering, Romania
Lefkothea Kartasidou, University of Macedonia, Department for Educational and Social Policy, Thessaloniki, Greece
Stjepan Kovačević, University of Split, Faculty of Science, Department of Polytechnics, Croatia
Suzana Loškova, University “Ss. Cyril and Methodius” Skopje, Faculty of Electrical Engineering and IT, Macedonia
Sergej Vladimirivoič Makov, Donskoi State Technical University, Rostov region, Russian Federation
Cvetko Mitrovski, University “St. Kliment Ohridski”, Technical Faculty Bitola, Macedonia
Samra Mujačić, University of Tuzla, Faculty of Electrical Engineering, Tuzla, Bosnia and Herzegovina
Tatjana Atanasova-Pačemska, University “Goce Delčev” Štip, Faculty of Electrical Engineering, Macedonia
Dionysios Politis, Aristotle University of Thessaloniki, Faculty of Sciences, Greece
Riste Temjanovski, University “Goce Delčev” Štip, Faculty of Economics, Macedonia
Katrin Poom-Valickis, Tallinn University, School of Educational Sciences, Tallinn, Estonia
Katerina Zdravkova, University “Ss. Cyril and Methodius” Skopje, Faculty of Computer Science and Engineering, Macedonia
Dragana Bjekić, University of Kragujevac, Faculty of Technical Sciences Čačak, Serbia
Miroslav Bjekić, University of Kragujevac, Faculty of Technical Sciences Čačak, Serbia
Snežana Dragićević, University of Kragujevac, Faculty of Technical Sciences Čačak, Serbia
Živadin Micić, University of Kragujevac, Faculty of Technical Sciences Čačak, Serbia
Siniša Randić, University of Kragujevac, Faculty of Technical Sciences Čačak, Serbia
Radomir Slavković, University of Kragujevac, Faculty of Technical Sciences Čačak, Serbia

Organizing Committee

Chair:
Ivan Milićević, University of Kragujevac, Faculty of Technical Sciences Čačak, Serbia

Secretary:
Milica Stojković, University of Kragujevac, Faculty of Technical Sciences Čačak, Serbia

Members:
Veljko Aleksić, University of Kragujevac, Faculty of Technical Sciences Čačak, Serbia
Marija Blagojević, University of Kragujevac, Faculty of Technical Sciences Čačak, Serbia
Miloš Božić, University of Kragujevac, Faculty of Technical Sciences Čačak, Serbia
Nataša Cvijović, University of Kragujevac, Faculty of Technical Sciences Čačak, Serbia
Nedeljko Dučić, University of Kragujevac, Faculty of Technical Sciences Čačak, Serbia
Biljana Đorić, University of Kragujevac, Faculty of Technical Sciences Čačak, Serbia
Milka Jovanović, University of Kragujevac, Faculty of Technical Sciences Čačak, Serbia
Ksenija Lajšić, University of Kragujevac, Faculty of Technical Sciences Čačak, Serbia
Milan Marjanović, University of Kragujevac, Faculty of Technical Sciences Čačak, Serbia
Katarina Mitrović, University of Kragujevac, Faculty of Technical Sciences Čačak, Serbia
Vladimir Mladenović, University of Kragujevac, Faculty of Technical Sciences Čačak, Serbia
Miloš Papić, University of Kragujevac, Faculty of Technical Sciences Čačak, Serbia
Ana Radović Firat, University of Kragujevac, Faculty of Technical Sciences Čačak, Serbia
Nebojša Stanković, University of Kragujevac, Faculty of Technical Sciences Čačak, Serbia
Lena Tica, University of Kragujevac, Faculty of Technical Sciences Čačak, Serbia
Vojislav Vujičić, University of Kragujevac, Faculty of Technical Sciences Čačak, Serbia
Table of Contents
Preface III
Chairmen’s Foreword IV
Organization V

Plenary Session: Keynotes
P1 Conceptualization of Technology as a Curriculum Framework of Technology Education 3
D. Purković
P2 Formal Education in Data Science – A Perspective of Serbia 12
I. Luković
P3 New approaches in designing educational assessment instruments and its use in international (assessment) studies: What's new in PISA 2018? 19
D. Pavlović Babić

Session I: Technics, Technology and Informatics in Education
I.1. Application of interactive whiteboard in the consideration of concepts pollination and pollinators 27
D. Draganić, M. Stefanović, M. Mijakovac, Lj. Stanisavljević, J. Stanisavljević
I.2. ICT and Art Education 32
V. Ilić, T. Stojanović-Dorđević, A. Šikl-Erski
I.3. Learning to Sing Byzantine Music Online: The Intersection of Rich Content Education and Special Education 38
D. Politis, D. Margounakis, R. Tzimas, G. Kazdaridis, N. Paris, V. Aleksić
I.4. Educational software for learning psychics - combination of simulations and formative assessment 47
B. Đorić, D. Lambić, Ž. Jovanović
I.5. Programming and Simulation of Model Controls in Teaching Technics and Informatics 52
D. Kreculj, G. Jovišić, G. Manojlović, S. Minić
I.6. Video Games - Influence on Children's Cognitive Abilities 58
B. Arsović, L. Zlatić
I.7. Video Conference in Terms of Application of ICT in Education 63
S. Gavrilović, P. Pravdić, G. Miodragović
I.8. Application of a remote experiment in elementary school teaching 70
N. Điković
I.9. Enhancing Teaching and Learning in Greece by Implementation of ICT in Educational System 73
S. Obradović, G. Mounou, D. Mounou, H. Sidropoulos, A. Sidropoulos
I.10. The contribution of information technology in the education of high school students with visual impairment 77
V. Žigić, Z. Savković, D. Mačešić-Petrović, M. Veselinović
I.11. Implementation of the Lean concept within Smart School Management 83
S. Puzović, V. Paunović, J. Vesić Vasović
I.12. Predictive Analytics for Students’ Success 88
D. Pokrajac, V. Mladenović
Lj. Pecić
I.14. Professional orientation of secondary school students of economics 98
V. Petrović, G. Popović Božanić
I.15. Grammar School Graduates’ Professional Decision-Making and Higher Education Orientation
S. Milovanović, N. Kićanović, K. Dunjić Mandić, B. Đorić

I.16. Application of statistics for the analysis of results achieved in primary education
S. Mijailović, V. Lazarević, M. Đukić

I.17. Language of the Internet – change or decline?
L. Palurović, L. Tica

Session II: IT Education and Practice

II.1. Cloud Services in Higher Education
N. Stefanović, M. Janjić

II.2. Shifting Education to Cloud: A Reference to Maritime Studies
S. Bauk, T. Dlabač

II.3. The Correlation Between International E-Learning Standards and National Standards of Serbia and Nearby Countries
D. Knežević

II.4. Comparative Analysis of E-Learning Standard
M. Bursać

II.5. Knowledge Sources in ICS Fields With Daily Intensity of Innovation – „TIE”-2017
Ž. Micić, V. Ružičić

J. Atanasijević

II.7. Using Web Server Log Files for Analysis and Improvements Related to Study Programs
P. Stolić, D. Milošević

II.8. Will You Bring Your Laptop? Investigating Students’ Attitudes Towards BYOD
M. Milošević, M. Radović, O. Ristić

II.9. Usability Testing in Human-Computer Interaction Classroom
D. Damnjanović, K. Mitrović

II.10. The concept of development of the intelligent tutoring system sensitive to emotions
V. Veljović

II.11. Online Reading Strategies Use in English as a Foreign Language in Biotechnical Engineering
M. Bojović

II.12. Mechanism for Migrating Data in Relational Databases
S. Nogo, D. Vasiljević

II.13. Information system for obtaining reports on students of the High Technical School of Vocational Studies from Urosevac in Leposavic
N. Marković, D. Živković, F. Marković

II.14. Knowledge Bases in the Field of Expert Systems and Artificial Intelligence
A. Pešić

II.15. An Analysis of User’s Information Security Awareness
D. Đurković, M. Milošević

II.16. Benchmark of Web Browsers with Automated Testing Tool
S. Nogo, Z. Škrkar

II.17. Software Testing Course in IT Undergraduate Education in Serbia
S. Šošić, O. Ristić, K. Mitrović, D. Milošević
II.18. Teaching Adaptability and Code Reuse of Web Applications with the N-tier Architecture: Case study in VS.NET

Lj. Kazi, D. Radosav, Z. Kazi, E. Cherkashin, M. Bhatt, A. Kansara

II.19. One MCDM Approach to Learning Management Systems Evaluation

V. Paunović, S. Puzović, J. Veslić Vasović

II.20. Possibility of Deploying COSMOS Operating System on Personal Computers

S. Đokić, S. Stanjojlović, D. Vujčić

II.21. A Mathematical Learning Environment Based on Serbian Language Resources

M. Radojičić, I. Obradović, R. Stanković, M. Utvić, S. Kaplar

Session III: Engineering Education and Practice

III.1. Financial Literacy of Engineering Students - Waiting for PISA 2018 Results in Serbia

M. Stanisavljević, M. Stojković

III.2. Dual/Cooperative Education in Higher Education

H. Hochrinner, J. Haas

III.3. Innovation of University Courses in The Field of Manufacturing Technologies Based on The Implementation of Dual Education

N. Dučić, J. Baralić, R. Slavković

III.4. A Constructive Approach to Teaching with Robotino®

D. Pršić, V. Stojanović, V. Đorđević

III.5. Application of the RobotStudio software package for programming assembly robots

V. Jevremović, Z. Petrović, V. Ćirić, M. Popadić

III.6. Creating an Android Weather Forecast Application in the Android Studio

S. Aleksandrov, S. Vulović

III.7. Simulations of Analog Circuits in Multisim Software Suite

D. Damnjanović, M. Milošević, D. Vujčić, Ž. Jovanović, D. Jagodić

III.8. Differences in Radio Broadcasting between Europe and America: two Separate Models and the Advent of the Digital Audio Broadcasting System

D. Politis, A. Nikiforos, V. Aleksić

III.9. Arduino Platform Capabilities in Multitasking Environment

D. Mitrović, S. Randić

III.10. Raspberry Pi module clustering and cluster application capabilities

D. Mitrović, D. Marković, S. Randić

III.11. Multifunctional Solar Park with “+five in one”

G. Nad, A. Glišić, M. Radak, I. Nad, J. Živanić

III.12. Photovoltaic Laboratory Trainer in Student Educations for Renewable Energy Sources

S. Štatkić, N. Arsić, Ž. Milkić, A. Čukarić

III.13. The Magnetoimpendence Effect Principles of Measuring

R. Surla, N. Mitrović, J. Orelj, V. Joksimović

III.14. A tomographic method for determining the distance between standing wave antinodes and the frequency of electromagnetic radiation inside a microwave oven

M. Luković, A. Kalezić-Glišić, B. Nedeljković, S. Antić

III.15. Educational Laboratory Setup for Electric Current Measurement using Hall Effect Current Sensors

M. Luković, B. Koprivica, A. Milovanović

III.16. Virtual Instrumentation for Load Cell – Calibration and Measurements

S. Milosavljević, A. Milovanović, B. Koprivica
III.17. Application of Induction Machine U/f Control Through the Educational Laboratory Setup
 M. Rosić, M. Bjekić, M. Šućurović

III.18. Realization of Model of Robotic Arm S-430iF for Education Purposes
 V. Vujičić, I. Milićević, S. Dragičević, M. Marjanović

III.19. Application of Computer Simulation in Engineering Education
 M. Marjanović, S. Dragičević, I. Milićević, M. Popović, V. Vujičić

III.20. Design of 3D Virtual Classroom in Second Life for Metal Cutting Technology Course
 A. Mitrovic, M. Radovic

III.21. Numerical Analysis of The Profile in the Aero Tunnel
 I. Terzić, S. Aleksandrov, M. Todorović

III.22. Health Care Analysis Using Statistics
 A. Pešić, V. Lazarević, M. Đukić

III.23. Student Attitudes about Cheating in High Education
 M. Papić, M. Blagojević, H. Hochrinner, V. Kraguljac
A Mathematical Learning Environment Based on Serbian Language Resources

Marija Radojičić1*, Ivan Obradović2, Ranka Stanković2, Miloš Utvić3, Sebastijan Kaplar1
1 University of Novi Sad/Faculty of Technical Sciences, Novi Sad, Serbia
2 University of Belgrade/Faculty of Mining and Geology, Belgrade, Serbia
3 University of Belgrade/Faculty of Philology, Belgrade, Serbia
* marija.radojicic@uns.ac.rs

Abstract: In recent years, in line with ever growing usage of Information technology, the learning environments are changing. The amount of available learning materials in various forms has increased. These new environments demand comprehensive learning systems, which enable management of the learning corpus with special attention paid to relevant lexical resources. In this paper we present the concept of a Mathematical Learning Environment in Serbian (MLES), which is based on a corpus of mathematical materials and various lexical resources, enabling semantic search of mathematical content. A specific use of the system is mathematical support in solving real life problems from engineering practice. To that end complex issues had to be resolved, such as mathematical text analysis, processing of mathematical content in different formats, search of mathematical materials, indexing of mathematical content using Serbian lexical resources, issues that are further complicated due to rich Serbian morphology. This paper outlines the structure and solutions for MLES, as well as the main features of its already developed components.

Keywords: mathematical content; text processing; mathematical formulae

1. INTRODUCTION

Rapid development of information technology, resulting in a growing number and availability of learning materials, had a strong impact on changes in learning environments. New learning environments are needed, requiring appropriate technology to facilitate access to and management of learning materials in specific domains. Bearing this in mind, development of a Mathematical Learning Environment in Serbian (MLES) has been initiated. MLES is intended as a learning environment with the main goal of processing mathematical content in Serbian. The environment built around a corpus of mathematical content and provides mechanisms for processing and search of this content. It relies on existing lexical resources, morphological e-dictionaries and WordNet of Serbian, which have been developed within the University of Belgrade Human Language Technology group for several decades [1], as well as a newly developed glossary, Termi. The system is aimed at providing for enrichment of these resources with terms from the mathematical vocabulary, as well as offering support in understanding and solving some real life problems based on mathematical concepts. Source data for MLES corpus can vary considerably, as mathematical materials in Serbian are available in different formats, alphabets and dialects. Besides coping with different ways of writing mathematical formulae, one of the main challenges in obtaining a searchable format of these materials is the conversion of source files, given specific Serbian letters.

MLES provides a semantic search engine, which allows for processing of various formats of user requests, effective matching and relevance ranking, and features a user friendly interface. There are also possibilities of linking to BAEKTEL - an Open Educational Resources (OER) platform under edX [2], as well as relevant educational courses under a Moodle platform [3] [4].

There are several projects reported which are similar to MLES. Three interesting systems are presented in [5],[6]. MMT is a system that includes the theory graphs as the modular representation paradigm for mathematical knowledge. MathHub.info is an archive system for encoded knowledge and MathWebSearch is an example of a search engine enabling the search of mathematical formulae on the Web. The engine harvests the web for content representation of formulae and indexes them with substitution tree indexing. MathWebSearch can process only materials based on MathML and OpenMath. The project Digital Library of Mathematical Functions presents a comprehensive search mechanism for a specific corpus [7]. The corpus is based on a digitized handbook, which contains primarily mathematical formulae, graphs, methods of computation,
references, and links to software. The search offers feedback with appropriate concordances. Mathematical formulae are converted to LaTeX and then indexed. User requests are also converted to LaTeX, and the search proceeds as with ordinary text. Another relevant project is MathGo! that provides search and presentation of mathematical encoded text [8]. The software solution is based on the concepts of math block identification and vector representation, with special attention paid to the search of mathematical topics using clusters and relevance ranking. The system provides ranked listing of results, through a user friendly interface, which allows seamless interaction with users through a simple query mechanism. EgoMath is yet another software solution, which allows semantic search of mathematical content [9]. It supports indexing and search of mathematical content on the web using a full text search engine. To that end the solution uses linearization, transformation rules, generalization rules and ordering algorithm, which simplify the complex and highly symbolic mathematical structures into linear structures with well-defined symbols.

This type of support for Serbian is still not available. Existing Serbian lexical resources and tools enable efficient text search, including semantic and morphological expansion of user queries, the latter being very important in highly inflective languages, such as Serbian. Of special importance is LeXimir, a tool developed within this group that greatly enhances the potential of manipulating each particular lexical resource as well as several resources simultaneously [10]. Although the resources and tools have already been successfully used for a number of various language processing related tasks including query expansion, they need further improvement for management, named entity recognition, terminology extraction, and document indexing of mathematical content.

In the next section we give and overview of the MLES system, followed by a section outlining the main issues to be solved in its development. Section Four describes corpus processing results in MLES in more detail, while section Five offers the main features of the newly developed terminological resource, Termi. The paper end with some concluding remarks.

2. FLOW CONTROL

The architecture of the MLES system is based on three main components. The first component is dedicated to corpus processing and alignment with existing lexical resources. (Figure 1).

The obtained results are processed text, augmented dictionaries and annotated content. In this component a special challenge to corpus processing results from the use of two alphabets: Latin and Cyrillic, with different coding schemas and formats of source texts, as well as from various ways of expressing mathematical content. In order to resolve the problem of two alphabets, the entire corpus is transliterated into Latin alphabet. As for the various expression of formulas, mathematical content is converted to LaTeX, which allows for expression of mathematical formulae in text only format.

The second component handles user queries, semantic search, search expansion and ranking of results. This component proceeds in several phases, such as transliteration, tokenization and lemmatization of user queries, semantic search, query expansion, expanded search and ranked retrieval results (Figure 2).
The third component handles application to real life problems from engineering practice based on mathematical concepts (Figure 3). Results of the third component are annotated and linked texts, where every mathematical term in the text is linked to the appropriate dictionary entry or relevant corpus content related to that term.

This system component also extracts mathematical concepts from problems related to engineering practice. The process is based on clustering, categorizing and defining mathematical concepts from the base of relevant engineering problems.

![Figure 3. MLES application](image)

3. GOALS AND CHALLENGES

Searching and processing mathematical materials is a complex problem. Standard text processors cannot recognize mathematical texts in a proper way. There is thus a need for developing new and adapting existing processors for that purpose. Processing of mathematical content requires the translation of source content into some searchable format such as MathML or LaTeX, as a precondition for search with a search engine. MathML is the mathematical markup language, which has the aim to integrate mathematical formulae into web pages and documents, while LaTeX notation is more in use among mathematicians in offline conditions. The idea of MLES is to convert all source materials from corpus to LaTeX format, where mathematical formulae will be presented as strings, which will facilitate processing and search of mathematical content.

One of the most important parts in processing mathematical content is semantic search of mathematical formulae. According to [5], [6] there are several challenges in searching and processing mathematical formulae, the main problem being different notation depending on the context. For instance there can exist different expressions for the same mathematical content, with the same meaning such as:

\[\frac{1}{x} = \frac{1}{x} = \frac{1}{x} = x^{-1} \]

On the other hand, an expression can represent different content depending on the context, such as the number \(\pi \) (Pi), which can present the transcendent number \(\pi = 3,141592653589793... \) or radian measure of angle. Such challenges are addressed by augmented annotation and search. During the processing of mathematical formulae, augmented annotation can be realized, which can cover different expressions of the same formula.

4. CORPUS PROCESSING RESULTS

Mathematical terminology in Serbian is unsatisfactorily represented in terminological resources. Thus for example, in the Dictionary of the Serbian Academy of Sciences and Arts, out of 200,000 dictionary entries only 369 are marked as belonging to the Mathematics domain. One of the aims of MLES is to contribute to a better representation of mathematical concepts in terminological resources.

The initial MLES corpus was produced from 243 PhD theses, 15 textbooks in various areas of Mathematics as well as 212 lecture notes. Special attention was paid to the validity of content. For the purposes of lexical processing the entire corpus is converted to textual format. As the documents were in different alphabets and encodings, as well as in different formats, a tool was created for preprocessing and normalization of texts into the Latin alphabet. In textual format the corpus contains 1,802,519 simple forms of which 118,027 are different.

Existing Serbian morphological e-dictionaries of simple forms (DELAS) and inflected forms (DELAF) contain 135,000 lemmas [11], among which only 65 are marked as belonging to the mathematical domain. There are, however, more concepts from this domain, albeit without the corresponding semantic markers. One of the tasks of MLES is to enable that these markers are added.

Processing of the MLES corpus detected 5,111 unrecognized forms with a frequency greater than 1. Among them about 1,000 grammatically correct forms were identified, and on the basis of these forms 385 basic canonical forms or lemmas were produced, using the procedure described in (Krstev 2015). Among them 191 attributes (A), 174 nouns (N), and 7 verbs (V), such as the noun “ekstremum” (extreme value), represented in the DELAS dictionary of simple forms as ekstremum, N1+DOM=Math+FLX=N1 or the verb “faktorisati” (to factorize) represented in the same dictionary as faktorisati, V21+DOM=Math+FLX=V21. Some of the inflected forms of the noun ekstremum in the DELAF dictionary are:

- ekstremuma, ekstremum.N: mw4q
- ekstremumu, ekstremum.N: ms7q
- ekstremumom, ekstremum.N: ms6q
A large number of terms in mathematics, as in other domains, are multiword expressions (MWE). Thus a procedure described in [12] has been used for semi-automatic extraction of MWEs on basis of lexical resources and local grammars developed for Serbian. Special attention is given to automatic inflectional class prediction for simple adjectives and nouns and the use of syntactic graphs for extraction of MWE candidates for termbases, their lematization and assignment of inflectional classes.

There were 2,900 MWE candidates extracted with a frequency over 5, covering 46,000 different forms. An example of a MWE is “diferencijalno-algebarska jednačina” (differential-algebraic equation), represented in the DELAC dictionary of compounds with the lemma:

diferencijalno-algebarska (algebarski.A2:aefs1g) jednačina (jednačina.N600:fs1q), NC_2XAXN+sin=2XAXN(sin)

This lemma provides for recognition of the inflected forms of this compound in the corpus, such as “diferencijalno-algebarske jednačine” or “diferencijalno-algebarskih jednačina”, as well as all other forms generated by the transducer (local grammar) NC_2XAXN.

Evaluation and filtering of all terms is underway, in order to generate candidate MWEs to be entered into the morphological dictionary.

Serbian WordNet (SWN) currently has 21,476 synsets [13], out of them that 232 in mathematics domain, while the Princeton WordNet has 607 in this domain, which means that at least another 375 synsets need to be added to SrpWN, such as:

ENG3013860281nimplication:4,
logicalimplication:1,
conditional relation:
ENG30-13859307-n difference:4.

The enrichment of morphological dictionaries and SWN should be complemented by content synchronization (entries and literals), as well as domain markers. In the existing dictionary only the marker +Math exists for Mathematics, but adding domain markers for specific mathematical subdomains, such as Algebra or Geometry is also planned. In addition to that, semantic markers will be developed for special functions, integrals, equations and the like.

For corpus management, we have used the IMS Open Corpus Workbench (CBW) as a collection of open-source tools [14] and an adaptation of CQPweb, a web-based graphical user interface designed specifically for CWB query processor - CQP [15]. CWB is suitable for encoding, indexing, compression and decoding large text corpora (up to 2 billion words) with multiple layers of word-level annotation. CQP is a powerful and efficient concordance system which can process query patterns specified both at the character level (specifying a form of an individual word or an annotation) and at the token level (specifying syntactic relationships between tokens). Through CQP web users can both specify query patterns and get statistical information about corpus.

Within preparation of the MLES corpus to each word within the corpus the following information is assigned, in the following order:

- Word type (noun, verb, adjective, etc.) - POS tagging
- Lemma (nominative singular for a noun, infinitive for the verb, etc.) - lemmatization
- Values of inflective categories (gender, number, case, verb form, etc.), that is, inflective base and suffixes - grammatical annotation
- Marker for the semantic value - semantic annotation.

The advantages of corpus annotation are the following:

- Corpus search becomes more efficient due to the possibility of formulating more precise queries.
- When search results are concerned, annotation.
- Compensates for the information lost during corpus preparation (removed figures, tables, footnotes, etc.), as well as information that lack due to insufficiently wide context in which the search results are presented.

Annotation also alleviates the statistical analysis of the corpus, namely automatic assignment of the distribution of annotated linguistic properties.

5. APPLICATION TERMI

The Termi application has recently been launched to serve as a support for the development of terminological dictionaries in various fields. In MLES it is used for development of mathematical vocabulary. The realization of the application was based on the ASP.NET Framework for C# programming language and MVC design pattern, as well as HTML and JavaScript, whereas SQL Server served as support for the database.

The application is located at http://termi.rgf.bg.ac.rs/ and consists of 5 specific units: browse, search, update, bibliography and profiles. Termi currently supports the processing and presentation of terms in Serbian and English, but support for other languages is also planned.
On the Browse page all terms verified by editors can be viewed. The page is visible to all users regardless of whether they are logged in or not. On the left side of the page a hierarchical display of the vocabulary terms is available. Besides its name, each term has its synonyms, abbreviations, description and bibliography. In case that the description of a term contains a Latex fragment, the fragment will be interpreted, which helps in the presentation of mathematical formulae (Figure 4).

As for the Search page, it is meant for the search of terms, both in Serbian and English. This page is also intended both for users that are logged-in and those that are not.

The Update page is the most complex page in the application. This page can be accessed only by registered users, who can add, modify and delete terms both in Serbian and English. Thus, there is a possibility of updating terms either only in Serbian, or only in the English, or simultaneously in both languages. Term modification implies changes of the very properties of the term (name, abbreviation, synonyms and description) as well as modification of external connections of the term with the existing bibliography. Two more options are available on the Update page, namely spell check for the languages in which terms are entered, and the possibility that, depending on user needs, the term description is interpreted as a Latex document. On this page, akin to Browse page, on the left side of the screen a hierarchical view of the terms is available.

However, unlike the browse page, at the Update page all terms are visible, and not only terms that have been verified. In addition to update, this page offers the options of exporting data to Excel or TBX files [16]. A detail of such an export of a term is depicted in Figure 5. The Bibliography page contains a list of all bibliography units. Besides reviewing the bibliography, adding, modifying and deleting bibliography is also possible on this page.

As for the profiles, it is important to note that all logged users are divided into 4 roles: reader, editor, reviewer and administrator. The reader is a user who only has right to read, which is a role that is by default assigned to every user at registration. Editor and reviewer are users who have the task to update the contents of the dictionary, with the difference that in the hierarchy the reviewer is at a higher level. Reviewer is a user who has the exclusive right to initiate term verification (this is the advantage of reviewers in relation to the editors). As in most applications the administrator is the user who has all rights within the application. Finally, it should be noted that as a precaution logical deletion is performed not physical, while all changes are stored in a separate table. Naturally, only the administrator has the right for physical deletion.
6. CONCLUSION

In this paper the concept of MLES, which can be a purposeful learning environment at different levels of education in Serbian, is given. The salient feature of the system is strong lexical support. Within MLES various types of lexical resources are used as well as local grammars, with the aim to provide a comprehensive and searchable learning environment. Although the general lexica in Serbian is well covered, mathematical terminology needs further improvements. MLES presents a system that supports managing and usage of mathematical content in Serbian. The ultimate goal is the integration of real life problems from engineering practice in the system. Special attention is paid on the processing of mathematical content by usage of different tools which are still under development. The concept has several advantages such as: comprehensive learning environment, development of search engines which are suitable for mathematical content, processing of mathematical content and augmentation of term base of mathematical concepts. To that end a newly developed application Termi is used, as it represents a suitable dictionary for mathematical terms.

Further plans will tackle additional integration, development and testing of lexical tools and engines in MLES. Detailed evaluation of the entire system is planned, which will provide directions for further improvement of MLES.

REFERENCES

TECHNICS and Informatics in Education (7th ; 2018 ; Čačak)
Proceedings / TIE 2018 [i. e.] 7th International Conference
Technics and Informatics in Education, Čačak, 25-27th May 2018
[organizer] University of Kragujevac, Faculty of Technical Sciences, Čačak ; [editor Ivan Milićević]. - Čačak : Faculty of Technical Sciences, 2018 (Čačak : Faculty of Technical Sciences). - X, 387 str. : ilustr. ; 25 cm + 1 elektronski optički disk (CD-ROM)
Tiraž 150. - Str. III: Preface / Ivan Milićević. - Bibliografija uz svaki rad.
1. Faculty of Technical Sciences (Čačak)

a) Образовна технологија - Србија - Зборници
b) Техника - Образовање - Зборници
c) Информациона технологии - Образовање - Зборници
d) Учење на даљину - Зборници
e) Наставници - Стручно усавршавање - Зборници

COBISS.SR-ID 264037900